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SPECIAL NOTATION

T

NOMENCLATURE
Eddy viscosity coefficien. (Eq. 3).

Coefficients of dissipation equation (Eq. 8).

Turbulence kinetic energy per unit mass,
1/2(u]'_? + u52+ u'g) .

Integral length scale (eq. 1).

Length parameters.

Dissipation length scale.

Mixing length.

Rate of production of turbulence kinetic energy.
A velocity associated with turbulence.

Reynolds number.

Two-point autocorrelation of streamwise velocity.
Strain.

Components of strain tensor (Eq. 2).

Total strain = strain x time.

Time.

Components of velocity fluctuations; i = 1,2,3.

Components of total velocity U, = Ui + ui: i=1,2,3

Cartesian Coordinate; i=l,2,3.

Rate of dissipation of turbulence kinetic energy.

Eddy viscosity

Denotes a time-averaged value.
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1. Introduction

Until the past twenty years, turbulence was thought to be
totally chaotic. Most early approaches to understanding and
predicting turbulent flows were statistical in nature. 1In them,
statistically steady turbulent flows were considered
superpositions of time mean velocity profiles and random
fluctuations about those means. Although this approach has had
notable successes, the goal of finding a single method capable of
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simulating all, or at least a wide range, of turbulent flows has

proved elusive. This may indicate that the concepts embodied in

the statistical approach do not provide a complete description of

the phenoqfna occuring in turbulent flows.

In the last twenty years, it has become clear that coherent

or organized structures and events not only occur in turbulent

flows but are probably responsible for many of the important

properties of these flows. 1In particular, organized structures

are now thought to account for a large fraction of the mass,

momentum, and energy transport and production of new turbulent

motions. Indeed, a reasonable picture of a turbulent flow may be

one in which coherent structures or events containing a small

fraction of the velocity fluctuations are responsible for much of

the property transport. On the other hand, in this picture,

incoherent motions make up the bulk of the fluctuating field but

account for only a small fraction of the transport. However, the

incoherent motions mask the coherent events, making them
difficult to find in the laboratory; this may be the reason why
they remained undiscovered for so long.

This picture of turbulence, if correct, indicates that the
events occuring in turbulent flows may be flow dependent.

Consequently, it may not be possible to treat all turbulent flows

with a single model containing a small number of empirical
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constants or functions. Turbulence models of the future may need
,to reflect the physics of each particular region of a flow i.e.
they may need to be different in each region, or zonal in nature.

The work reported herein attempts to resolve some questions
raised by this picture of turbulent flows. The approach is to
simultaneously look at a turbulent flow with statistical and
visualization techniques. Statistical methods provide the
quantities contained in nearly all currently used turbulence
models while visualization methods are the best known means of
revealing the coherent structures. To carry out such a program,
one needs detailed velocity field data. The best source of such
data at present is full simulations of turbulent flows, which are
available for only a few simple flows. Because the required data
were available for them, we decided to concentrate on homogeneous
turbulent flows in this study. These flows may be structurally
different from flows of technological interest, but their
simplicity makes them easier to study. It is also easier to test
ideas about turbulence and its modeling on these flows. 1In
particular, we shall study whether a single model (including a
single set of constants) can be applied to a variety of
homogeneous turbulent flows visually with the aim of determining
whether the mechanisms of turbulent transport and production in
them are similar to those in inhomogeneous flows.

In the usual view of turbulent flows, the phenomena to be
modeled are the production of new turbulent fluctuations, the
redistribution of energy among the components of the turbulence,
viscous dissipation, and diffusion. In homogeneous turbulence,
all statistical average quantities are independent of position so
diffusion does not occur. The production terms are not modeled
in any flow and so, never require special attention. The
redistribution terms, to which the fluctuating pressure makes a
large contribution, have been studied extensively by other
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authors including Feiereisen et al (1981), Shirani et al (1981),
and Rogallo (198l1); we are not in position to add significantly

n to their contributions. For these reasons, the statistical part
?' of this study will concentrate on the modeling of the length

;; scales and the dissipation. Our decision to study these was

%: reinforced by the general impression that these are the weakest

l. points in current turbulence models.
[
3

The plan of this report is as follows. In the next chapter,

we shall use the results of full simulations of homogeneous
turbulent shear flow to look for evidence of the turbulence
production mechanisms that are known to exist in inhomogeneous
shear flows. The object is to discover similarities and
differences between the two types of flows with the goal of
shedding light on the question of whether one can expect the same
model to deal with both types of flow. We find that the
structures in the two flows are different; the mechanism of
turbulence production in the homogeneous flow appears to be more
akin to that of the inner region of the boundary layer than to
that of the inhomogeneous shear layer.

In Chapter 3, we shall look at the length scales of
turbulence in homogeneous flows including both shear flow and two
kinds of irrotational strain flow. The objective is to determine
how well the models match the actual length scales in the
homogeneous flows.

Turbulence models, especially the currently popular two-
equation models, use the dissipation of turbulence energy as a
means of determining the length scale. The models used in the
dissipation equation are generally considered more suspect than
oy those used in the kinetic energy equation. Accordingly, we shall
T look at the models used in the dissipation equation in Chapter 4
to determine whether a model with a single set of constants can DR
be applied to all of these flows. The results can be regarded as ’3” ‘
evidence as to whether one model can serve for a variety of flows
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in the more general case. We shall find that the constants do
require variation from flow to flow.
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The data used in this study were taken from the full simulations
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of homogeneous turbulence made by Rogallo (1981) and Lee and
Reynolds -(1984): they provided data for which the authors of this
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report are grateful. The raw data are‘given in Tables 1-3.
2. Structure in Homogeneous Shear Flow

Experimental evidence accumulated in the past ten years
shows that the energetic behavior of the turbulent mixing layer
(includi-.y its rapid growth) can be explained by deterministic
mechanisms. The best known mechanism is merging of two or more

vortices to form a larger vortex; when two vortices are involved

in this process, it is called pairing (Brown and Roshko, 1974,
Winant and Browand, 1974). Another mechanism is tearing in which
a vortex is torn apart and distributed to its neighbors (Moore
and Saffman, 1975).

The pairing mechanism is most clearly displayed in two
dimensional flows in which the merging vortex tubes are
straight. However, the vortex tube structures seem to be
unstable with respect to three dimensional perturbations that
destroy their spanwise coherence. 1In particular, if a vortex
develops spanwise waviness, parts of it may pair with the vortex
ahead of it while other parts pair with the vortex behind it.
This process has been called local or helical pairing and was
observed in simulations by Cain et al (1981) and predicted
theoretically by Pierrehumbert and Widnall (1982). It produces a
three dimensional flow in which the pairing process is important
but not spanwise coherent. Another mechanism for producing three
dimensionality is the production of streamwise vorticity by the

stretching vortices. This process was observed in the laboratory
by Konrad (1976) and in simulations by Cain et al (1981) and
explained theoretically by Corcos and Lin (1984).

--------------------
........




The mechanism of turbulence production in boundary layers is
quite different and not totally understood. In part, it involves
lifting of slow-moving vorticity-containing fluid from the
wall. As this fluid rises into the faster moving parts of the
flow the vorticity it contains is stretched; the result is
'hairpin’ vortices. The hairpin vortices induce lift up of other

vortices from the surface. The combination of lifting and

stretching produces vertically oriented thin shear layers across
which there are strong gradients of the streamwise component of ‘
the velocity. These shear layers then break down to form chaotic - -1
motions. The entire process involves a great deal of momentum
transport and, therefore, Reynolds stress. The process was };f{j
described in detail by Kline et al (1967). B

Homogeneous turbulent flows are often used as building
blocks in the development of turbulence models. Since we have
argued that turbulence models should reflect flow structure and i;ffﬁ
that different models may be needed for regions with different it
kinds of structure, it is important to know whether homogeneous
flows are like their inhomogeneous counterparts. For this
reason, we decided to loock for evidence of the mechanisms found

in inhomogeneous shear flows in homogeneous shear flow. To

accomplish this aim, we need some means of detecting the

mechanism of turbulence production.

Tn the two dimensional mixing layer described above, the
Reynolds stress occurs in the regions between merging vortices
and is coherent across the span of the flow. 1In three
dimensional flows, such as that of Chandrsuda et al (1978), the

velocity correlations still extend two or three layer thicknesses
in the spanwise direction. This leads to a picture of these
flows as containing ‘'watermelon' or 'cigar' shaped vortices.
Although the process has not been observed in the laboratory, it
is likely that these vortices interact in ways similar to those
observed in the two dimensional flow i.e. by merging and pairing.
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The search for structural coherence in the computed e

homogeneous shear flows was carried out by constructing contour “ffﬁ
plots of the instantaneous Reynolds stress and vorticity; an o

interesting result is found. Figures 1 and 2 show the contours
of the Reynolds shear stress on two perpendicular planes at a
particular instant in a homogeneous shear flow; there is one

region of high Reynolds stress concentration which appears in
both views. This region does not have the 'watermelon' shape
that would be expected if the homogeneous flow is similar to the
mixing layer; instead, it is approximately disc shaped. That is,
it is roughly circular in the x-y plane (whose normal is »
spanwise) and thin in the spanwise direction. Although we were
able to visualize only a small number of these Reynolds stress
concentrations, all of them had this shape. No structures with
greater spanwise extent were found. Furthermore, these
structures were found to become larger in size and more intense

with time but their shape did not change appreciably.

To study these regions in more detail, contour plots of the .0
fluctuating vorticity were made. Figures 3 and 4 demonstrate
that the streamwise and normal vorticity is not concentrated at
the same locations as the Reynolds stress but a short spanwise

distance to either side of them. From these figures, it appears :Q,T
that the vorticity concentrations are inclined at some angle (our D
guess based on a limited number of observations is 20-25°) with

respect to the streamwise direction and lie on either side of the ;Tﬁ}
Reynolds stress concentrations. As shown in Figure 5, the .

fluctuating spanwise vorticity demonstrates no tendency to form
concentrations; this is further evidence that pairing plays no

significant role in this flow.

These results demonstrate that the pairing is not a
significant mechanism in homogeneous shear flow. The pattern

seen in the figures is more reminiscent of the structure seen in :
the near-wall parts of boundary layers:; this was described @
above. The primary mechanism of turbulence production in these
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regions involves the lifting of spanwise vorticity from the

surface, and subsequent stretching and formation of thin vertical
shear layers. In this process, the Reynolds stress is
concentrated between the legs of the stretched vortices where the
velocity generated by the legs of the vortex is such as to pump
low velocity fluid upward. This mechanism gives rise to Reynolds
stress containing regions with thin spanwise extent and greater
extent in the other directions. We thus conclude that the
mechanism for turbulence production in homogeneous shear flow is
similar to, but simpler than, the mechanism responsible for
turbulence production in the near-wall region of wall-bounded
flows. Another important difference is that the homogeneous flow
is symmetric with respect to the upward and downward directions
and the mechanism is equally likely to pump fast moving fluid
downward as slow moving fluid upward. This suggests that
homogeneous shear flow may be an excellent tool for studying the
processes that occur in near-wall regions.

The process has been clarified further by the recent work of
Rogers and Moin (1984). They found that the total vorticity
(including the vorticity of the mean flow) lies predominantly at
an angle of 45° with respect to the mean streamlines and is
associated with sinuous inclined vortices which fill a large part
of the flow. These structures are elongated by their self-
induced velocity and that of the mean flow. They induce an
upward flow of low momentum fluid or a downward flow of high
momentum fluid depending on the sense of their rotation and thus
induce regions of significant Reynolds stress concentration. The
shape of the high Reynolds stress regions suggested by this model
are precisely of the type desribed in the preceeding paragraph.

Thus, the structure of a homogeneous shear flow has more in
common with wall bounded flow than mixing layers. Unless a
single model fitting all of these flows can be found (k- ¢ models
have been used with some success for this purpose), models for
homogeneous shear flow should behave more like those appropriate
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to the inner layers of boundary layers than to those used in
mixing layers.

3. Length Scales
3.1 Turbulence Models

All turbulence models in current use require an estimate of
length scale of the turbulence. 1In this chapter, we shall
investigate some of these models. To test these models, we need
to have available the length scale which the models are intended
to represent. The appropriate length scale in a turbulent flow
is the size of the eddies responsible for the largest part of the
momentum transport. For a turbulent shear flow, in which the
important momentum flux is normal to the direction of the flow,
the appropriate length scale is the integral scale which measures
the normal extent of the correlation of the streamwise velocity:

Ly, » = [Ry;(0,x,,0) ax, (1)

11,
where R;; is the two-point autocorrelation of the streamwise
velocity. 1In this chapter, we shall again concentrate on the
homogeneous shear flows. The reasons are two-fold: a) shear
flows are the most important flow class in applications, and b)
the data for the homogeneous shear flows cover a much longer
development time than those for other homogeneous flows, thus
allowing a much more complete study.

Before testing the models, let us introduce them. Because
they receive the greatest amount of attention, we shall
concentrate on models which use the Boussinesqg eddy viscosity
concept; these approximate the Reynolds stress by:

———r U ) 0
o o i j
ug uy = -2v Sy = “r(a'x'j + axi) (2)
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& where Ve is the eddy viscosity. Due to its importance in L
- engineering flows, we shall concentrate on the Reynolds shear e
v
!l stress, u,u,.
.

. Simple physical arguments, of which the Prandtl mixing
. length argument is the simplest, lead to expressions for the eddy
viscosity of the form:

v, = cuqz (3)

where g is a velocity associated with the turbulence, usually
taken as the r.m.s. velocity, & 1is a length scale, and Cu is
a constant.

e

In mixing length models, the length scale is prescribed in

. terms of some physical scale of the flow. For free shear flows,
it is some fraction of the width of the layer. In boundary
layers, a two layer model, which makes the mixing length
proportional to the distance from the wall in the near-wall e
- region and proportional to the boundary layer thickness far from B
] the wall, is used. For homogeneous flows, there is no
characteristic length scale. Nonetheless, we can use the data to

define a mixing length:

Lnix = /uli 1.12i / dUl/dx2 (4) :
) and we shall study its behavior. JLTT

In two-equation models, partial differential equations for A
turbulence quantities are solved along with those for the mean iixﬂ
: flow. One equation provides the turbulence kinetic energy, k -* o
o (per unit mass); its square root is the velocity scale needed in .

Eq. (3). The second equation may describe the behavior of any of <

1T e
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W

'

a number of other quantities. The standard modeling assumption
is that the length scale is related to the dissipation by: ~
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L, =q3/e (5)
cf. Tennekes and Lumley (1972).

Expressions for length scales are needed in other current

turbulence models, including Reynolds stress models and algebraic
stress models. The accuracy with which Eq. (5) models the length

scale of Eq. (1) and the accuracy of the modeling used in the

dissipation equation are therefore of great interest; the first PR
issue will be studied in this chapter, the second issue will be RS
taken up in the following chapter. PA;q

3.2 Behavior of the Length Scales

In this section, we will study the behavior of the integral g,yﬁ
length scale defined by Eq. (1), which we take as the significant R
length scale in sheared turbulence, and at models designed to
represent it.

Table 4 gives the length scales defined in the preceeding
section as functions of time for the four homogeneous shear flow
cases; the mixing length defined by Eq. (4), the dissipation
length scale of Eq. (5), and the integral scale defined by Eq.
(1) are included. Figure 6 presents this data graphically for a
single case; the other cases are qualitatively similar and are
not shown. The behavior of the integral scale is somewhat
erratic in all cases; this is a consequence of computing the
integral scale by numerical integration of Eq. (1). The
correlation function in the integrand is negative for some values
of x, so there is considerable numerical cancelation in the
integral, making the result susceptible to numerical errors.
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Figure 6 shows that the dissipation length scale is
approximately proportional to the integral scale while the mixing
length behaves quite differently. As noted above, the mixing
length model is not appropriate for this flow. An explanation of
its behavior can be provided by rearranging Eq. (4) to yield:

-

bon e}
lmix u1“2 € (6)
2 o ) 2
£ qa |Sq

As the ratio u{ué /q2 is approximately constant (0.15) in nearly

all shear flows, Eg. (6) shows that the ratio of the mixing
length to the dissipation length scale is proportional to
qu/e. The latter quantity is both the ratio of the time
required for the imposed shear to modify the flow to the time AR,
scale of the turbulence and the ratio of production to '1;;;:
dissipation. Technological flows cover only a small range of e
this parameter allowing the mixing length model to be applied to N
them. Homogeneous flows, on the other hand, cover a much wider
range of this parameter, and the mixing length model cannot work i
as well for them. E%Fff

As noted above, Fig. 6 demonstrates that the dissipation
length scale is approximately proportional to the integral
scale. However, this figure also shows the agreement to be only Ffﬁfﬁ
fair, so we attempted to fit the ratio of these length scales to e

a function of the dimensionless parameters. There are three such
parameters in these flows--the total strain, St, the production-
dissipation ratio, P/¢, and the Reynolds number, Rg: the last is
given in Table 4. The best fit was found when the Reynolds
number was used as the correlating parameter; the result is shown
in Fig. 7. Considerable fluctuation about the curve fit remains,
and can be ascribed, at least in part, to the inaccuracy of the
integral scale. Nonethelessz, there does appear to be a

functional relationship and the curve fit shown in the figure can
be represented by:

L
3
q> _ 10.7 Re
eL Re + 36.5 (7) o
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This relationship may be of value in two-equation models for
the inner region of wall-bounded flows. Note that, although Fig.
(7) suggests that the ratio q3/eL goes to zero with the Reynolds
number, there is nothing in the figure to suggest whether this is
correct or not, so caution is urged if this relationship is
applied in near-wall regions. Furthermore, the Reynolds numbers
shown in Table 4 are quite large at the last few time steps so
the data at the last few time steps in each simulation should be
regarded with suspicion.

The length scales for the axisymmetric strain cases are
given in Table 5. We were unable to fit these data in the manner
applied to the sheared turbulence data. This is probably a
result of the maximum total strain in these cases (approximately
2) being much smaller than the total shear in the shear cases
(approximately 18); the small total strains are a consequence of
the numerical methods used in the full simulations. The initial
spectrum of all cases was the same although the initial Reynolds
numbers were varied over a factor of two by changing the
viscosity, and strain rates were varied over a wide range. If we
assume that there is a unique 'equilibrium' spectrum for each
turbulence Reynolds number and production/dissipation ratio, the
initial conditions cannot be appropriate as each simulation
develops, but this does not happen until the total strain is well
beyond the limit reached in these simulations. Hence, the strain
simulations are somewhat immature and we cannot use them to study
the behavior of the length scales.

Despite the difficulties with the strain flows, one can
conclude that the length scale based on the dissipation is more
appropriate to homogeneous sheared turbulence than is the mixin
length, and is likely to apply to a wider range of flows than {ﬁe
mixing length.

-12- Ve




O W TN Y [ Skl A S R Sy Q - N gV g Gy e . e
T T T, T I Ao L

4. Test of Models of the Dissipation Equation
4.1 Strategy

In the preceding chapter, we found that, at least for
homogeneous shear flow, the length scale based on the dissipation
rate is roughly proportional to the length scale associated with
the transport of momentum across the mean streamlines. This
indicates that the length scale estimate used in many turbulence
models is well chosen. However, because the study of the length
scales was based on the results of full simulations, we were able
to use the exact dissipation in the analysis. 1In model
calculations of turbulent flows, the dissipation is defined by
the solution of a partial differential equation. Although an
exact equation governing the rate of dissipation of turbulence
can be derived, it contains correlations of fluctuating velocity
components of order higher than two. These correlations cannot
be evaluated and models for them are necessarily uncertain.
Consequently, the models used in the dissipation equation are
empirical, making them the weakest points in current turbulence
models.

For homogeneous turbulent flows, the commonly used model
dissipation equation is:

= Pe

ale
™

2¢

where k is the turbulence kinetic energy and P is the rate of
production of turbulence kinetic energy given by:

= = 1'1s7

where 8ij is the strain rate defined by Eq. (2), and Cie and

C26 are model parameters that are usually treated as constants.
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In this chapter, we shall use the full simulation results to
evaluate both the validity of this model and the parameters it
contains. For this purpose, we need the dissipation and its time

derivative. The dissipation is computed in the full simulations
and is available; its time derivative is obtained by

o e,
LA

differentiation. The differentiation was accomplished by spline
_l fitting the dissipation; this method was preferred over finite
differencing because the data points are widely spaced. The
derivatives obtained in this way contain considerable uncertainty
) which carries over to the model constants estimated from them.
E; Despite the uncertainty, we should be able to discern trends and
thus shed light on a number of important issues connected with
' modeling the dissipation equation.

For purposes of analyzing the data, it is useful to rewrite
Eq. (8) in the form:

(10)

which suggests that a plot of (k/eP)de/dt and ¢/P, should be a

straight line with slope C and intercept C Such plots

provide a stringent test ofzzhe model. 1If theI;odel is valid,
the data points will fall on a straight line, and the constants
can be extracted by least squares analysis, allowing study of
some of the issues raised earlier. We chose to rearrange Eq. (8)
so that the data are plotted against ¢/P rather than P/e, the
parameter used by most modelers, because this emphasizes the

small P/e data which is more relevant to engineering flows.

In particular, we can compare the parameters obtained from

the least squares fit with the generally accepted values. We can
also determine whether the same parameter values apply to all
homogeneous flows and thus, whether a variety of flows can be fit

with a single model. Furthermore, we can determine whether the




constants are independent of the dimensionless variables or

not. As noted earlier, the principal dimensionless variables are
' the Reynolds number, k2/¢v, the ratio of production to
dissipation, P/e, (this is also the ratio of the time scale of
the imposed strain to the turbulence time scale) and the
: dimensionless time, St. The tests will occupy the remainder of
k this chapter.

4.2 Reduced Data

The quantities necessary for analyzing models of the
dissipation eguation were obtained by reducing the data supplied
by Lee and Reynolds (1984) and Rogallo (1981). The production
was calculated in two ways. The first method is essentially

-y

exact; it uses Eq. (9) and the full simulation data for the
Reynolds stresses to compute the rate of turbulence energy
production. This approach takes the model quite literally.

However, in applications, the production is not, and cannot,
be computed this way because the exact Reynolds stresses are not
available. 1Instead, one must use the model Reynolds stresses

i given by Eq. (2). Eg. (9) is then replaced by:

8c k2

t: P = ——E—— Sij Sij (11)
} Both methods of computing the production will be used.

The proposed tests require the time derivative of the
- dissipation. This quantity was obtained by spline fitting the

dissipation as a function of time for each run and PP
; differentiating the result. The wide spacing of the times at .
Sii which the data were provided (a consequence of the deforming t§ﬁ )
iﬁ grids used in the full simulations) results in large uncertanties fﬁiiﬁ
ii in the computed derivatives. Because they are particularly ;;f"
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uncertain, the derivatives at the first and last time steps of
each run were not used in this analysis. The same values of
de/dt were used in both approaches to model testing:; this choice
was made on the basis of two arguments: 1) these are the only
data available for this quantity and 2) an accurate model would
yield the correct dissipation, and therefore, the correct time
derivative.

The derived data required for the analysis of dissipation
models are given in Tables 6-8. Some of the differences between
the modeled quantities and the ones obtained from the full
simulations are quite large; for the strain flows this is due to
a combination of the high strain rates and the short time span of
the simulations. It is not surprising that these differences
produce significant differences in the results presented below.

4.3 Analysis of the Data

The derived data were used to study the v;Iidity of the
model represented by Eq. (8). The results for (k/eP)de/dt were
plotted vs. ¢/P for each of the three homogeneous turbulent
flows. Least squares straight lines were fit to the data derived
from each individual run and to the combined data for each
flow. The data points based on the exact production, the least
squares fits to those data, and the prediction of the standard
= 1.44 and C = 1.92) are

le 2¢
shown for each of the three flows in Figures 8-10,

model (for which the constants are C

respectively. Figures 11-13 give similar results based on the
model production given by Eq. (11). The parameters obtained from
the least squares fits for each run and the complete data set for
each flow are given in Table 9.




A few conclusions can be drawn immediately from these

figures. There is considerable scatter in the data and, although
' straight lines fit the data reasonably well, the resulting
parameters contain considerable uncertainty:; we cannot estimate
this uncertainty accurately but it is probably +.25 for each
parameter. The uncertainty is demonstrated by the fact that the
b standard model fits the data nearly as well as the least squares
- lines in Figures 8 and 9, despite significant differences in the

parameters. Thus, the parameter values extracted from the full

simulation data should not be accepted without allowance for the
l uncertainty.

The scatter in the data can be attributed to at least three
separate sources. The first is the uncertainty in the time
" derivative of the dissipation; this uncertainty was shown earlier
: to be a consequence of differentiating data at widely spaced time
steps at which the raw data were available. A second source of
uncertainty is the relative immaturity of the flows, especially
a the strain flows. All simulations began with isotropic
- turbulence as an initial condition; in others, the isotropic
) turbulence was allowed to develop for some time. Considerable
- time is required for the flows to display the characteristics of
i. a fully developed strain flow. Unfortunately, the simulations
LA must be stopped when the length scales become too large for the
computational region. As a result, the simulations may contain
only a small span of developed flow, most of the flow is
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- - - . . . - -~ . -
PRI W A S A I I AT e LA A -

transitional. A third cause of uncertainty, which may be related
- to the preceding one, is the tendency of individual runs to
i: follow trajectories that differ considerably from both the least
fﬁ square fits to the full data sets and the standard model. This
P’ is reflected by wide scatter among the parameters derived from
L; individual runs and their differences from the values derived
%f from the full data sets. Individual run trajectories are
;ﬁ' illustrated in Figure 14, which is identical to Figure 8 except
» for the inclusion of lines representing individual runs; the
- lines representing the overall fit and the standard model have
;
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been omitted for clarity.

Although the data based on the modeled production show no
more scatter than those based on the exact production, the
parameters obtained by fitting these data show both wider scatter
among themselves and greater deviation from the standard
values. This is probably due to the immaturity of the flows and
the inability of the model to represent the production well in
- the early region of highly strained flows. We shall therefore
.= work exclusively with the data derived from the full simulations
f
[

in the remainder of this report.

From Figures 8 and 9, we see that the standard model fits
k the data for plane strain and shear reasonably. However, Figure
10 shows that the line representing the standard model lies well
outside the data band for axisymmetric strain. Especially, the
slope of the standard model line (governed by the parameter
Cze) is too large. The inability of the standard model to fit
the data for axisymmetric flows may be related to the difficulty
that modelers have had in finding a single model capable of

fitting both plane and axisymmetric jets. When models derived

PP AL
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for plane flows are applied to axisymmetric flows, the rates of
growth of the predicted flows are incorrect. This result argues
for caution in applying a single model to a variety of flows;
these results are evidence of the need for zonal models. This
answers one of the key questions raised at the beginning of this
report.

From Figures 8-13 we also note that, although the data jﬁif?a

scatter considerably about the straight line fits, there is no S
indication that the relationship between (k/eP)de/dt and ¢/P is , i

; anything other than linear. 1In other words, there is no reason ’ _fjﬁ
f to expect the parameters to depend on P/e¢. {Q;Qﬁj




The scatter in the data might be reduced and the fit to the
model might be improved by making the model 'constants'--we have
called them parameters above and will continue to do so--
functions of the nondimensional variables. The argument of the
preceding paragraph shows dependence of the parameters on P/e to
be improbable. We considered the possibility that the variation
in the parameters is due to Reynolds number dependence. However,
the Reynolds numbers are large enough that the model parameters
should not depend on this parameter. An attempt to fit the
parameters for the plane strain case as functions of the Reynolds
number produced an irregular and stronger than expected
functional dependence, so the possibility of Reynolds number
dependence of the parameters was rejected. The remaining
possibility is that the parameters are functions of the
nondimensional time St. We shall explore this next.

To test the possibility that the model parameters are
functions of the total strain, St, we sorted the data from the
various runs (Tables 6-8) according to the value of the total
strain. For each total strain, a least squares fit to the data
was made; the results are presented in Table 10. 1In this
process, some of the data were not used because there were not
enough data for all values of the total strain. For this reason,
the overall values presented in Table 10 may differ from those in

Table 9. The data for the plane strain cases showing the lines

of constant total strain are plotted in Figure 15; the data for
different total strains clearly fall on lines of different slope
but the same intercept indicating that, for this flow at least,

cle may be taken as constant but C28 is a function of St. This
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conclusion is borne out by the least squares parameters for this
flow presented in Table 10.
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The results for the shear flow cases are shown in Figure
l6. For this flow, there is no indication that the data for
different St require different values of the parameters. Indeed,
the derived parameters given in Table 10 show considerable
scatter and no discernable trend. On closer examination, one
sees that the data for each St cover a very narrow range of
P/e , indicating that the production develops more quickly in
the shear flow than in the strain flows; this characteristic has
been noted by others (eg., Tzuoo et al, 1984). For sheared
turbulence, the parameters can be regarded as constants.

For the axisymmetric strain flow cases, the lines of
constant St are shown in Figure 17. Notice that the overall fit
is especially influenced by the data for the smallest value of
St, the data set with the largest ratio of dissipation to
production (see Table 8). Since this data set represents the
least mature flows, we decided to eliminate it from the overall
analysis and redo the overall fit. The result is shown in Fig.
18; the constants are given in Table 10. We see that, in
contrast to the case of sheared turbulence, the data can be fit
with the standard value of CZe’ but the value of C needs to

le
be changed to fit these data.

To sum up, we find that a single model of the dissipation
equation cannot fit the data for a variety of different kinds of
strain. For turbulence undergoing plane strain, dependence of
the parameter C2e on the total strain St is required. On the
other hand, the sheared turbulence data can be fit with constant
parameters; the standard parameters do well in this case.
Finally, for turbulence undergoing axisymmetric strain, constant
parameters appear to suffice but a value of the parameter

cle larger than the total strain is small in both strain cases:
the resulting parameters may be inaccurate for these cases.




5. Conclusions

We have investigated a number of issues connected with
turbulence and its modeling by using the results of full
simulations of homogeneous turbulent flows as the database. One
of the principal conclusions reached in this study is that it is
indeed possible to use full turbulence simulation results (and,
presumably, large eddy simulation results as well) to study both
the physics of turbulence and turbulence modeling. A principal

recommendation resulting from this study is that such simulations
be used when feasible for the purposes to which they have been
put in this study: combination of simulation data with
experimental data would be even more desirable. The development
of new methods of investigating the data would be valuable and is
therefore highly recommended.

Turning to specific conclusions to be drawn from this study,
we have shown that, the mechanism of turbulence production in
homogeneous sheared turbulence resembles the mechanism of the
near-wall part of a boundary layer more than the mechanism of the
turbulence production in the mixing layer. Despite this, the
standard model dissipation equation that is often used for
inhomogeneous shear flows works well in the homogenous flow. It
thus appears that it is possible to fit a wide range of shear
flows, which have greatly different physical behavior, with a
single turbulence model. We do not understand the reason why
this is so, but it is very encouraging.

The length scale based on the dissipation that is commonly
used to model the integral scale works quite well for homogeneous
shear flow. However, an adjustment to the usual formula needs to
be made at low Reynolds numbers. The mixing length fits the
integral scale well only over a narrow rande of the ratio of
production to dissipation and should be used only for
'egquilibrium' flows which meet this criterion. For the strain

...........................................
.........
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flows, the limited range of total strain for which data were
available made it impossible to study the behavior of the length

scales in a satisfactory manner.

We found that the model parameters need to be different for
each class of flow. 1In particular, the standard model is
satisfactory for sheared turbulence but not the strain flows.

For the case of plane strain, it appears to be necessary to make
the parameter Cze of the modeled dissipation equation a
function of the total strain. On the other hand, the
axisymmetric strain cases require a change in the parameter

Cle’ a constant value appears to be satisfactory. The limited
range of total strain that we were able to study suggests that
this portion of the work be repeated when data covering a broader

range of total strain become available.
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Table 1

Data for Homogeneous Turbulence Undergoing Plane Strain
From Lee and Reynolds (1984)

Time Kinetic Dissipation Turbulence Components o
Enegay 2 2 2 .
T q € uj us U3 D
]
S = 0.65 ey
0.0000 0.1304 0.0847 0.0441 0.0424 0.0439 2
0.5385 0.0771 0.0354 0.0263 0.0326 0.0182 -
1.0710 0.0610 0.0208 0.0205 0.0309 0.0097 ),
1.6019 0.0586 0.0156 0.0192 0.0330 0.0064 L.
2.1329 0.0639 0.0138 0.0205 0.0386 0.0048 "o "T
s =1.3 o
0.0000 0.1304 0.0847 0.0441 0.0424 0.0439 3y
0.2700 0.1002 0.0558 0.0346 0.0418 0.0238 -4
0.5366 0.0911 0.0438 0.0318 0.0450 0.0143 LT
0.8033 0.0944 0.0389 0.0328 0.0518 0.0098 "o
1.0670 0.1074 0.0383 0.0371 0.0630 0.0074 RS
S = 2.6 RN
0.0000 0.1304 0.0847 0.0441 0.0424 0.0439 IO
0.1366 0.1165 0.0729 0.0406 0.0483 0.0276 Vo
0.2685 0.1177 0.0725 0.0426 0.0567 0.0184 "o
0.4009 0.1304 0.0770 0.0482 0.0692 0.0130 mea
0.5309 0.1542 0.0853 0.0574 0.0870 0.0097 Rty
§ = 5.2
0.0000 0.1304 0.0847 0.0441 0.0424 0.0439
0.0683 0.1266 0.0847 0.0443 0.0522 0.0301 'y
0.1354 0.1372 0.1001 0.0510 0.0649 0.0213 e
0.2013 0.1602 0.1242 0.0623 0.0824 0.0155 R
0.2670 0.1970 0.1558 0.0782 0.1072 0.0116
s = 25 S
0.0000 0.1304 0.0847 0.0441 0.0424 0.0439 °®
0.0155 0.1370 0.0985 0.0485 0.0570 0.0315 -
0.0285 0.1581 0.1382 0.0605 0.0734 0.0242
0.0418 0.1953 0.2133 0.0804 0.0963 0.0186 A
0.0558 0.2554 0.3423 0.1106 0.1308 0.0140 R
S = 100 @
0.0000 0.1304 0.0847 0.0441 0.0424 0.0439 e
0.0034 0.1368 0.0970 0.0480 0.0555 0.0333 S
0.0078 0.1704 0.1646 0.0669 0.0799 0.0236 o
0.0112 0.2169 0.2787 0.0920 0.1065 0.0183 s
0.0136 0.2637 0.4145 0.1166 0.1319 0.0153 Lo
o
25~
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Table 2
" Data for Homogeneous Shear Flow
P From Rogallo (1981)

° Time Kinetic Dissipation Reynolds
- Energy Shear
e Stress
t k € uéué/q2
Case BSH9 s = 28,28
0.0707 8.2459 130.8352 -0.1544
0.1414 6.2240 64.8076 -0.1693
0.2121 6.5075 48.8456 -0.1675
0.2828 7.7987 48.2009 -0.1648
0.3536 9.8547 55.4535 -0.1603
0.4243 12.5860 69.1574 -0.1594
0.4950 16.0822 87.8498 -0.1602
0.5657 20.6653 112.7094 -0.1563
0.6364 25,7101 146.5232 -0.1522
Case BSH10 S = 28.28
0.0707 5.1572 95.1088 -0.1731
0.1414 3.9861 42.6498 -0.1785
0.2121 4.1558 33.6941 -0.1674
0.2828 4.7527 32.0710 -0.1612
. 0.3536 5.7482 33.6144 -0.1557
> 0.4243 7.2030 38.2974 -0.1541
- 0.4950 9.3365 45.0482 -0.1550
- Case BSHI11 S = 56.56
*
0.0354 11,2136 261.3250 -0.1788
0.0707 11.4356 198.7566 -0.1818
0.1061 13.1627 187.9649 -0.1679
0.1414 15.7866 197.7942 -0.1614
0.1768 19.8112 221.9700 -0.1624
; 0.2121 25,9920 265.9385 -0.1607
- 0.2475 34.7631 337.6216 -0.1613
Case BSH12 s =20
0.1000 9.1089 61.3060 -0.1498
0.2000 8.5069 55.6731 -0.1586
L 0.3000 8.7937 47.5697 -0.1593
. 0.4000 9.9933 46.5868 -0.1595
. 0.5000 12,0217 49.3771 -0.1564
> 0.6000 14.7169 60.0536 -0.1512




Time

T
s =10
0.0236
0.0468
0.0700
0.0941
0.1160
0.1387

s = 20

. 0.0125
. 0.0241
; 0.0359
0.0462
0.0586
0.0698

~ S = 40

0.0061
0.0120
0.0185
& 0.0236
ud 0.0293
0.0352

o s =5

~ 0.0466
) 0.0929
- 0.1397
0.1866
0.2332
0.2791

K s =10

0.0233
0.0481
0.0695
0.0940
0.1170
0.1387

................
. . '

Kinetic
Enerqgy

q2

4.3901
3.3578
2.7549
2.4018
2.2306
2.1476

5.1941
4.6231
4.2818
4.1166
4.0338
4.0462

5.7336
5.5530
5.6178
5.8010
6.1111
6.4979

3.2022
1.9867
1.4483
1.1944
1.0658
0.9988

2.7378
2.0563
1.7366
1.5279
1.4130
1.3455

.................................
........

......

Table 3
Data for Homogeneous Turbulence Undergoing Axisymmetric
Strain From Rogallo (1981)

Dissipation
E

64.3063
45.2619
33.3630
25.4876
2]1.0812
18.4767

80.0632
71.1713
66.4785
63.9339
61.6251
60.1506

90.6299
91.1385
100.2140
111.7112
128.1692
146.3656

41.7351
20.1809
11.2151
7.3673
5.6087
4.7363

43.1753
27.7339
20.7865
16.5394
14.4098
13.2673

....................

Reynolds
Stress
Anisotropy
Bll B22=B33
-0.0510 0.0255
-0.1146 0.0573
-0.1666 0.0833
-0.2068 0.1034
-0,.2333 0.1166
-0.2538 0.1269
-0.0550 0.0275
-0.1202 0.0601
-0.1752 0.0876
-0.2118 0.1059
-0.2442 0.1221
-0.2654 0.1327
-0.0527 0.0263
-0.1219 0.0610
-0.1859 0.0929
-0.2239 0.1120
-0.2560 0.1280
-0.2786 0.1393
-0.0503 0.0251
-0.1145 0.0573 Py
-0.1659 0.0829 =TT
-0.,2020 0.1010 L
-0.,2275 0.1138 Sl
-0, 2467 0.1233 j{}ﬁ%@
-0
-0.0643 0.0321 T
-0,1354 0.0677 SRR
-0.1833 0.0916 Lo
-0,2224 0.1112 RO
-0,2485 0.1243 ®
-0.2671 0.1335 T
S
A

..............................................

...............
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s = 20

0.0120
0.0240
0.0359
0.0477
0.0586
0.0696

S = 40

0.0065
0.0131
0.0185
0.0236
0.0296
0.0349

s =25

0.0475
0.0925
0.1406
0.1865
0.2326
0.2774

3.2893
2.8856
2.6675
2.5635
2.5316
2.537

3.6322
3.5055
3.5308
3.6329
3.8222
4.0319

1.9472
1.2536
0.9224
0.7585
0.6618
0.6023

Table 3 concluded

56.9968
48,2453
43.4551
41.0395
40.3360
40.7194

66.2693
66.6514
70.9752
77.4141
86.9958
96.9658

25.4329
12.3167
7.2250
5.1039
4.0033
3.3940

-0.0651
-0.1349
-0.1912
-0.2323
-0.2592
-0.2788

-0.0705
-0.1464
-0.1984
-0.2364
-0.2686
-0.2881

-0.0681
-0.1313
-0.1808
-0.2139
-0.2384
-0.2573

0.0326
0.0675
0.0956
0.1162
0.1296
0.1394

0.0352
0.0732
0.0992
0.1182
0.1343
0.1441

0.0340
0.0657
0.0904
0.1069
0.1192
0.1287
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Table 4
I Length Scales in Sheared Turbulence
Time Reynolds Mixing Integral Dissipation j:j:f' '_-fl:
}: Number Length Scale Length
= Ly1,2
L Case BSH9
0.0707 73.50 0.0564 0.0799 0.5119
0.1414 84.53 0.0513 0.1067 0.6777
. 0.2121 122.61 0.0522 0.1260 0.9613
‘ 0.2828 178.45 0.0567 0.1537 1.2780
5 0.3536 247.67 0.0628 0.1549 1.5779
0.4243 323.93 0.0708 0.1784 1.8262
0.4950 416.36 0.0802 0.1584 2.0765
0.5657 535.85 0.0899 0.2277 2.3575
0.6364 638.00 0.0989 0.2665 2.5165
h Case BSH10
= 0.0707 19.77 0.0472 0.0981 0.3483
- 0.1414 26.34 0.0422 0.1195 0.5278
- 0.2121 36.24 0.0417 0.1487 0.7112
i 0.2828 49.80 0.0438 0.1638 0.9138
0.3536 69.51 0.0473 0.1535 1.1596
k{ 0.4243 95.79 0.0527 0.1841 1.4277
o 0.4950 136.83 0.0601 0.2210 1.7912
- Case BSH11
g 0.0354 34.02 0.0708 0.0635 0.4064
i- 0.0707 46.52 0.0721 0.0575 0.5503
f“ 0.1061 65.18 0.0743 0.1182 0.7186
- 0.1414 89.09 0.0798 0.1347 0.8969
:r; 0.1768 125.03 0.0897 0.1297 1.1236
r; 0.2121 179.63 0.1022 0.1489 1.4094
Eﬁ 0.2475 253.10 0.1184 0.1516 1.7171
Case BSH12
"
S 0.1000 270.68 0.0584 0.1124 1.2683
.f_ 0.2000 259.97 0.0581 0.1485 1.2605
C. 0.3000 325.12 0.0592 0.1643 1.5505
- 0.4000 428.73 0.0631 0.2264 1.9180
- 0.5000 585.38 0.0686 0.2833 2.3876
k; 0.6000 721.32 0.0746 0.2687 2.6591
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Table 5

i Length Scales in Axisymmetric Strained Turbulence
Total Reynolds Mixing Lengths Integral Scales Dissipation
Strain Number 1 2 11,1 22,2 Mean Length
Case CDl11 S = 10
. 0.2363 42,38 0.1113 0.2510 0.1068 0.1122 0.1913 0.1430

0.4684 35.23 0.0857 0.2291 0.1018 0.1222 0.2006 0.1359
0.7002 32.17 0.0678 0.2143 0.0931 0.1317 0.2082 0.1371
0.9407 32.01 0.0551 0.2048 0.0819 0.1392 0.2132 0.1460
1.1599 33.38 0.0472 0.2004 0.0730 0.1432 0.2153 0.1580
1.3870 35.30 0.0413 0.1988 0.0666 0.1427 0.2125 0.1703

| 5 N

Case CD12 S = 20

0.2499 47 .66 0.0601 0.1369 0.1047 0.1074 0.1845 0.1479
0.4816 42.47 0.0496 0.1349 0.0993 0.1105 0.1852 0.1397
- 0.7182 39.00 0.0411 0.1343 0.0912 0.1124 0.1833 0.1333
) 0.9243 37.48 0.0354 0.1345 0.0824 0.1136 0.1806 0.1306
: 1.1715 37.34 0.0300 0.1355 0.0717 0.1142 0.1767 0.1315
1.3953 38.49 0.0262 0.1373 0.0636 0.1135 0.1727 0.1353

Case CD13 S = 40

i 0.2426 51.30 0.0317 0.0718 0.1040 0.1048 0.1811 0.1515
. 0.4817 47.85 0.0271 0.0740 0.1001 0.1044 0.1784 0.1436
0.7413 44 .54 0.0228 0.0774 0.0941 0.1018 0.1720 0.1329
0.9429 42.60 0.0199 0.0804 0.0880 0.0992 0.1656 0.1251
. 1.1739 41.21 0.0172 0.0840 0.0802 0.0963 0.1580 0.1179
i 1.4066 40.80 0.0149 0.0876 0.0736 0.0924 0.1500 0.1132

Case CD1l4 S =95

0.2330 34.75 0.1904 0.4286 0.1122 0.1224 0.2063 0.1373
0.4643 27.66 0.1319 0.3524 0.1113 0.1457 0.2342 0.1388
- 0.6983 26.45 0.0985 0.3106 0.1046 0.1635 0.2538 0.1554
’ 0.9328 27.39 0.0792 0.2881 0.0955 0.1718 0.2611 0.1772
1.1662 28.64 0.0672 0.2761 0.0950 0.1762 0.2667 0.1962
1.3955 29.79 0.0588 0.2701 0.0766 0.1782 0.2634 0.2107

Case CD21 S =10

b 0.2326 12.28 0.0858 0.2001 0.1366 0.1465 0.2482 0.1049
. 0.4805 10.78 0.0638 0.1816 0.1362 0.1625 0.2671 0.1063 w0
0.6953 10.26 0.0510 0.1718 0.1259 0.1714 0.2731 0.1101 U
0.9404 9.98 0.0412 0.1648 0.1093 0.1793 0.2761 0.1142 DN
1.1705 9.80 0.0396 0.1608 0.0941 0.1826 0.2798 0.1166 DO
1.3866 9.65 0.0299 0.1585 0.0835 0.1835 0.2726 0.1176

&
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Table 5. Concluded

20

I Case CD22 s

0.2402 13.42 0.0470 0.1097 0.1316 0.1380 0.2354 0.1047
0.4796 12.20 0.0378 0.1075 0.1297 0.1435 0.2408 0.1016
0.7171 11.58 0.0308 0.1070 0.1237 0.1476 0.2426 0.1003
0.9550 11.32 0.0254 0.1073 0.1134 0.1456 0.2351 0.1000
1.1720 11.24 0.0217 0.1083 0.1018 0.1493 0.2344 0.0999
» 1.3911 11.18 0.0186 0.1095 0.0907 0.1481 0.2282 0.0992

Case CD23 ) 40

0.2605 14.08 0.0244 0.0579 0.1290 0.1336 0.2288 0.1045
! 0.5223 13.04 0.0202 0.0597 0.1272 0.1334 0.2275 0.0985
0.7384 12.42 0.0173 0.0618 0.1244 0.1315 0.22137 0.0935
0.9431 12.06 0.0148 0.0640 0.1202 0.1289 0.2184 0.0894
1.1843 11.87 0.0124 0.0668 0.1136 0.1254 0.2106 0.0859
1.3959 11.85 0.0107 0.0694 0.1069 0.1222 0.2032 0.0835

; Case CD24 s =95

0.2373 10.54 0.1437 0.3383 0.1469 0.1637 0.2742 0.1068
0.4623 9.02 0.1006 0.2829 0.1458 0.1896 0.3052 0.1140
0.7031 8.33 0.0750 0.2501 0.1311 0.2080 0.3220 0.1226
0.9327 7.97 0.0602 0.2312 0.1144 0.2194 0.3307 0.1294
i 1.1631 7.74 0.0501 0.2189 0.1021 0.2265 0.3362 0.1345
1.3872 7.56 0.0428 0.2110 0.0955 0.2306 0.3398 0.1377
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Table 6
Derived Data-~-Plane Strain

Time de /dt Exact quantities Model quantites
T Prod. e/p (x/eP)de/dt Prod. (k/e P)de/dt
S = .65
0.538 -0.04170 0.009 3.785 -4.868 0.026 1.383 =-1.778
1.071 -0.01308 0.014 1.514 -1.393 0.027 0.766 -0.705
1.602 ~0.00674 0.017 0.900 -0.734 0.034 0.464 -0.378
s =1.3
0.270 ~-0.06303 0.023 2.381 -2.415 0.109 0.510 -0.517
0.537 ~0.02643 0.040 1.099 -0.691 0.115 0.379 -0.238
0.803 ~-0.00997 0.055 0.713 -0.222 0.139 0.279 -0.087
S = 2.6
0.137 ~0.02663 0.054 1.360 -0.397 0.453 0.161 -0.047
0.269 0.019325 0.099 0.729 0.158 0.465 0.156 0.034
0.401 0.048409 0.146 0.527 0.281 0.538 0.143 0.076
S = 5.2
0.068 0.150536 0.115 0.739 0.981 1.842 0.046 0.061
0.135 0.308486 0.227 0.441 0.932 1.831 0.055 0.115
0.201 0.422935 0.348 0.357 0.784 2.012 0.062 0.136
S = 25
0.015 1.899254 0.637 0.155 2.074 42,883 0.002 0.031
0.028 4.046675 1.229 0.112 1.884 40.700 0.003 0.057
0.042 7.270794 1.943 0.110 1.713 40,226 0.005 0.083
S = 100
0.003 6.246672 2.214 0.044 1.990 694,221 . 000 0.006 SRS
0.008 21.51598 5.623 0.029 1.980 634.706 .000 0.018 °
0.011 46.55979 8.820 0.032 2.054 607.615 . 000 0.030 =
N
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Table 7

Derived Data--Sheared Turbulence

g B "'-V. 'W'T""‘_" NG ,‘-v'—.,' —

Time, t de/dt Exact Quantities Model Quantities
Prod. e/P (k/eP)de/dt  Prod. e/P (x/eP)de/dt
S = 28.28
0.141 -517.5 59.60 1.087 -0.834 86.08 0.753 <=0.577
0.212 -58.3 61.65 0.792 -0.126 124.84 0.391 -0.062
0.283 46 .4 72.70 0.663 0.103 181.70 0.265 0.041
0.354 153.2 89.37 0.621 0.305 252.19 0.220 0.108
0.424 229.8 113.50 0.609 0.369 329.84 0.210 0.127
0.495 301.9 145.71 0.603 0.379 423.95 0.207 0.130
0.566 410.3 182.74 0.617 0.412 545.62 0.207 0.138
S = 28,28
0.141 -367.9 40.25 1.060 -0.854 53.65 0.795 -0.641
0.212 -18.2 39.36 0.856 -0.057 73.81 0.457 -0.030
0.283 -8.2 43,33 0.740 -0.028 101.42 0.316 -0.012
0.354 47.5 50.63 0.664 0.1l6l 141.55 0.237 0.057
0.424 82.2 62.80 0.610 0.246 195.08 0.196 0.079
S = 56.56
0.071 -926.7 235.15 0.845 -0.227 378.98 0.524 -0.141
0.106 94.7 250.00 0.752 0.027 530.93 0.354 0.012
0.141 466.1 288.27 0.686 0.129 725.75 0.273 0.051
0.177 926.4 364.07 0.610 0.227 1018.47 0.218 0.081
0.212 1610.7 472.56 0.563 0.333 1463.26 0.182 0.108
S = 20
0.200 -83.1 53.96 1.032 -0.235 93.59 0.595 -=0.136
0.300 -50.2 56.02 0.849 -0.166 117.04 0.406 -~0.079
0.400 11.2 63.75 0.731 0.038 154.34 0.302 0.0l1e6
0.500 75.4 75.20 0.657 0.244 210.74 0.234 0.087 T
,' B
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Table 8
E Derived Data~- Axisymmetric Strain LI
Exact Quantites Model Quantities
Time,t de/dt Prod. e/P (k/eP)de/dt  Prod. e/P (k/eP)de/dt

—rry Lt iy R DRt
. soa A

]

A

s = 10 o
0.024 -989.60 3.357 19.159 -20.128 8.092  7.947 -8.349 RS
0.047 -651.98  5.774 7.840 -8.378 6.726 6.729  -7.191 ]
0.070 -404.49  6.883 4.847 -4.852 6.142 5.432  -5.438 :
0.094 -255.05 7.449  3.422 -3.227 6.111 4.171 -3.933 BRI

k 0.116 -154.72 7.806 2.701 =-2.097 6.373 3.308  -2.569 °

0.139  -74.61  8.176 2.260 =-1.061 6.740 2.741 -1.287 3

s = 20
0.012 -977.06  8.567 9.346 =-7.399 36.393  2.200  -1.742 oo
0.024 -558.03 16.666 4.270 -2.175 32,433  2.194 -1.118 e
0.036 -287.58 22.503 2.954 ~0.823 29.785 2.232  -0.622 S
0.046 -215.12 26.161 2.444 -0.529 28.626 2.233  -0.484 SO
0.059 -158.06 29.553 2.085 ~0.350 28.517 2.161  -0.363 S
0.070 -105.39  32.215 1.867 =-0.220 29.395 2.046  -0.241 LT

S = 40 |
0.006 -587.15 18.124 5.000 -2.049 156.698 0.578  =0.237 s
0.012 757.47 40.167 2.244 1.136 146.165 0.624 0.316 T
0.019 1947.40 62.647 1.600 1.743 136.047  0.737 0.802 R
0.024  2594.90 77.945 1.433 1.729 130.137 0.858 1.035 L
0.029  3027.70 93.873 1.365 1.538 125.875 1.018 1.147 L
0.035 3228.70 108.635 1.347 1.319 124.621 1.174 1.150 T

s =5

0.047 -622.70  1.208 34,549 -39,551 1.658 25.166 -28.809 SR
0.093  -309.51 1.707 11.825 -17.854 1.320 15.286 -23.080 °
0.140 -114.13  1.802 6.225 -8.181 1.262 8.884 -11.675 R
0.187  -54.80  1.809 4.072 =-4.910 1.307 5.636  -6.797 SR
0.233  -25.70  1.819 3.084 -2.686 1.367 4.103  -3.573 DR
0.279  -12.36  1.848 2.563 -1.410 1.422 3.332  -1.833

s =10 _e
0.023
0.048
0.070
0.094
0.117

0.139




0.012
0.024
0.036
0.048
0.059
0.070

0.007
0.013
0.018
0.024
0.030
0.035

0.047
0.092
0.141
0.187
0.233
0.277

S =20

-910.80
-551.28
-285.76
-124.98
-11.71
81.65

S =40

-371.68

488.41
1069.00
1424.90
1748.00
2020.60

s =5

-397.29
-185.72
-58.96
-33.52
-17.22
-9.97

6.426
11.682
15.298
17.869
19.683
21.218

15.354
30.794
42.032
51.527
61.601
69.705

0.994
1.235
1.251
1.217
1.183
1.162

Table 8 Concluded

8.869
4.130
2.841
2.297
2.049
1.919

4.316
2.164
1.689
1.502
1.412
1.391

25.578
9.977
5.777
4,195
3.383
2.920

-8.179
~-2.822
-1.147
-0.037

0.240

-1.327
0.834
1.265
1.298
1.247
1.205

-30.590
-15.312
-6.019
-4.095
-2.405
-1.522

20.501
18.640
17.685
17.294
17.160
17.073

86.002
79.647
75.878
73.649
72.547
72.426

1.006
0.861
0.795
0.761
0.738
0.721

2.780
2.588
2.457
2.373
2.351
2.385

0.771
0.837
0.935
1.051
1.199
1.339

25.274
14.302
9.089
6.708
5.421
4.705

-2.564
~1.769
-0.451
-0.043

0.298

-0.237
0.323
0.701
0.908
1.059
1.160

-30.277
-21.949
-9.469
-6.547
-3.855
-2.452




Strain
Rate

S
Plane Strain

0.65
1.30
2.60
5.20
25.00
100.00
Overall

Sheared Turbulence

20.00
28.28
28.28
56.56
Overall

Axisymmetric Strain

5.00

5.00
10.00
10.00
20.00
20.0
40.00
40.00

Overall

Standard Model

Table 9

Derived Model Constants

Model Constants based on:

Actual Production Model Production

cle

0.683
0.740
0.737
0.681
1.074
2.053
1.768

0.970
1.874
1.735
1.399
1.580

-0.290
1.052
0.765
1.953
1.825
2,341
3.083
2.634
2.276

1.92

c2€

1.459
1.323
0.830
-6.500
1.301
1.844

1.224
2.506
2.343
1.883
2.093

1.169
1.278
1.102
1.317
0.977
1.196
1.007
0.904
1.277

1.44

Cle

0.400
0.451
0.981
-0.005
-0.003
0.137

0.204
0.399
0.368
0.243
0.354

0.575
2.746
1.938
4.765
6.365
14.528
~1.008
-1.587
2.101

c2e

1.555
1.880
6.258

-4.799
-16.854
-72.355

1.261

0.603
1.281
1.192
0.711
1.099

1.269
1.389
1.332
1.762
3.272
6.206

-2.056
-2.191

1.352

e
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Table 10
Derived Model Constants o
Based on Actual Production o
Total Model Constants
Strain C C
le 2¢
Plane Strain
0.35 2.234 1.896
0.70 2.024 2.362
1.05 2.052 3.196 o
Overall 1.768 1.844 "
Sheared Turbulence 'j_A:f
4.00 1.791 2.314
6.00 0.769 1.046
8.00 1,757 2.394
10.00 0.633 0.657
12.00 3.200 4.745
Overall 1.526 2.034
Axisymmetric Strain
0.24 3.856 1.293
0.48 5.660 1.991
0.71 4.785 1.993
0.94 4,844 2.263
1.17 4,235 2.123
1.39 3.710 1.902
Overall
All cases 2.276 1.276
Last 5 cases 3.867 1.817
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